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Some new fixed point theorems in metric spaces

Tran Van An and Le Thanh Quan

Abstract. In this paper, the main results of [13] are generalized. Also,
examples are given to illustrate the obtained results.

1. Introduction and preliminaries

In the last fifty years, the contraction condition of Banach contraction
principle was generalized to many forms, see [2, 4, 10] for example. Also,
the metric space in Banach contraction principle was generalized to many
settings of generalized metric spaces. One of the most interesting ones is
the notion of a partial metric space introduced by Matthews [9]. Later,
many authors studied various types of fixed point theorems in partial metric
spaces, see [1] and references therein. But some authors showed that many
fixed point generalizations to partial metric spaces can be obtained from the
corresponding results in metric spaces, see more details in [5, 6, 12].

In [13], Samet et al. established new fixed point theorems on metric spaces
and then deduced analogous results on partial metric spaces. Then, many
fixed point theorems, including Banach contraction principle, Kannan fixed
point theorem, Reich fixed point theorem, Chatterjea fixed point theorem
in metric spaces and partial metric spaces were derived.

In this paper, we state some generalizations of the main results in [13].
We also give examples to illustrate the results.

The following notions and results are useful in what follows.

Definition 1.1. [8, Definition 3.1] Let X be a non-empty set and p : X ×
X −→ [0,+∞) be a function such that for all x, y, z ∈ X,

(1) The small self-distance: 0 ≤ p(x, x) ≤ p(x, y).
(2) The indistancy implies equality: If p(x, x) = p(x, y) = p(y, y) then

x = y.
(3) The symmetry: p(x, y) = p(y, x).
(4) The triangularity: p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

2000 Mathematics Subject Classification. Primary: 47H10, 54H25; Secondary: 54D99,
54E99.

Key words and phrases. fixed point; metric; partial metric.

c©2016 Mathematica Moravica
109



110 Some new fixed point theorems in metric spaces

Then p is called a partial metric and the pair (X, p) is called a partial metric
space.

Remark 1.1. [7, Remark 1.5] Let (X, p) be a partial metric space. Then
p(x, y) = 0 implies x = y. The reverse implication does not hold. A simple
example of a partial metric space with non-zero self-distances is the set
X = [0,+∞) with p(x, y) = max{x, y} for x, y ∈ X.

Definition 1.2. [3, Definitions 4–6] Let (X, p) be a partial metric space.
(1) A sequence {xn} is called convergent to x ∈ X, written as lim

n→∞
xn =

x, if lim
n→∞

p(xn, x) = p(x, x).
(2) A sequence {xn} is called Cauchy if lim

n,m→∞
p(xn, xm) exists and is

finite.
(3) (X, p) is called complete if each Cauchy sequence {xn} in X is con-

vergent to some x ∈ X and lim
m,n→∞

p(xn, xm) = p(x, x).

(4) [11, Definition 2.1] A sequence {xn} is called 0-Cauchy if

lim
n,m→∞

p(xn, xm) = 0.

The space (X, p) is 0-complete if each 0-Cauchy sequence {xn} con-
verges to some x ∈ X such that p(x, x) = 0.

Lemma 1.1 ( [7]). Let (X, p) be a partial metric space. Then the functions
dp, dm : X ×X −→ [0,+∞) given by

dp(x, y) = 2p(x, y)− p(x, x)− p(y, y),
dm(x, y) = max{p(x, y)− p(x, x), p(x, y)− p(y, y)}

for all x, y ∈ X, are metrics on X.

Lemma 1.2 ([7], Lemma 1.4). (1) A sequence {xn} is Cauchy in a par-
tial metric space (X, p) if and only if {xn} is Cauchy in the metric
space (X, dp).

(2) A partial metric space (X, p) is complete if and only if the metric
space (X, dp) is complete. Moreover

lim
n→∞

dp(xn, x) = 0 ⇐⇒ p(x, x) = lim
n→∞

p(xn, x) = lim
n,m→∞

p(xn, xm).

2. Main results

The main result of the paper is as follows.

Theorem 2.1. Let (X, d) be a complete metric spaces, ϕ : X −→ [0,∞)
be a lower semi-continuous function and T : X −→ X be a map. Suppose
that for any 0 < a < b < ∞, there exists γ(a, b) ∈ (0, 1) such that for all
x, y ∈ X,

a ≤ d(x, y) + ϕ(x) + ϕ(y) ≤ b(1)
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⇒ d(Tx, Ty) + ϕ(Tx) + ϕ(Ty) ≤ γ(a, b)M(x, y, T, ϕ)

where

M(x, y, T, ϕ) = max
{
d(x, y) + ϕ(x) + ϕ(y), d(x, Tx) + ϕ(x) + ϕ(Tx)

}
.

Then T has a unique fixed point x∗ ∈ X. Moreover, ϕ(x∗) = 0.

Proof. Let x0 be an arbitrary point in X. Consider the sequence {xn} ⊂ X
defined by xn+1 = Txn for all n ≥ 0. If there exists some n0 such that
d(xn0−1, xn0) + ϕ(xn0−1) + ϕ(xn0) = 0, then xn0−1 will be a fixed point of
T . So, we can suppose that, for all n ≥ 1,

(2) 0 < d(xn−1, xn) + ϕ(xn−1) + ϕ(xn).

First, we prove that

(3) lim
n→∞

[
d(xn−1, xn) + ϕ(xn−1) + ϕ(xn)

]
= 0.

Indeed, if for some n0 ≥ 1, we have

(4) d(xn0−1, xn0)+ϕ(xn0−1)+ϕ(xn0) < d(xn0 , xn0+1)+ϕ(xn0)+ϕ(xn0+1).

Put
a = d(xn0−1, xn0) + ϕ(xn0−1) + ϕ(xn0)

and
b = d(xn0 , xn0+1) + ϕ(xn0) + ϕ(xn0+1).

From (2) and (4), we have

0 < a = d(xn0−1, xn0) + ϕ(xn0−1) + ϕ(xn0)

< d(xn0 , xn0+1) + ϕ(xn0) + ϕ(xn0+1) = b.

From (1), there exists γ(a, b) ∈ (0, 1) such that

d(xn0 , xn0+1) + ϕ(xn0) + ϕ(xn0+1)(5)
≤ γ(a, b)max

{
d(xn0−1, xn0) + ϕ(xn0−1) + ϕ(xn0),

d(xn0−1, xn0) + ϕ(xn0−1) + ϕ(xn0)
}

= γ(a, b)[d(xn0−1, xn0) + ϕ(xn0−1) + ϕ(xn0)]

< d(xn0−1, xn0) + ϕ(xn0−1) + ϕ(xn0)

which is a contradiction to (4). So, for each n ∈ N, if we put

δn = d(xn, xn+1) + ϕ(xn) + ϕ(xn+1)

then {δn} is a non-increasing sequence of positive real numbers. Hence,
there is r ≥ 0 such that

(6) lim
n→∞

δn = lim
n→∞

[
d(xn−1, xn) + ϕ(xn−1) + ϕ(xn)

]
= r.

Suppose to the contrary that r > 0. Then, for all n ≥ 1, we have

(7) 0 < r ≤ d(xn−1, xn) + ϕ(xn−1) + ϕ(xn) ≤ δ0.
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From (1), there exists γ(r, δ0) ∈ (0, 1) such that

d(xn, xn+1) + ϕ(xn) + ϕ(xn+1)(8)
≤ γ(r, δ0)max

{
d(xn−1, xn) + ϕ(xn−1) + ϕ(xn),

d(xn−1, xn) + ϕ(xn−1) + ϕ(xn)
}

= γ(r, δ0)[d(xn−1, xn) + ϕ(xn−1) + ϕ(xn)].

Taking the limit as n→∞ in (8) and using (6), we get r ≤ γ(r, δ0)r which
implies that γ(r, δ0) ≥ 1. It is a contradiction. Thus r = 0 and (3) holds.

Next, we prove that {xn} is a Cauchy sequence in (X, d). Suppose to the
contrary that {xn} is not a Cauchy sequence in (X, d). Then there exists
ε > 0 for which we can find two sequences of positive integers {m(k)} and
{n(k)} such that for all positive integers k,

(9) n(k) > m(k) > k, d(xm(k), xn(k)) ≥ ε, d(xm(k), xn(k)−1) < ε.

From (9), we have

ε ≤ d(xm(k), xn(k))(10)
≤ d(xm(k), xn(k)−1) + d(xn(k)−1, xn(k))

< ε+ d(xn(k), xn(k)−1).

Taking the limit as k →∞ in (10) and using (3), we obtain

(11) lim
k→∞

d(xm(k), xn(k)) = ε.

On the other hand, we have

(12)
d(xn(k), xm(k)) ≤ d(xn(k), xn(k)+1) + d(xn(k)+1, xm(k)+1)

+ d(xm(k)+1, xm(k))

and

(13)
d(xn(k)+1, xm(k)+1) ≤ d(xn(k)+1, xn(k)) + d(xn(k), xm(k))

+ d(xm(k), xm(k)+1).

From (12) and (13), we get

(14)
| d(xn(k)+1, xm(k)+1)− d(xn(k), xm(k)) |

≤ d(xn(k)+1, xn(k)) + d(xm(k)+1, xm(k)).

Taking the limit as k →∞ in (14), and using (3) and (11), we obtain

(15) lim
k→∞

d(xm(k)+1, xn(k)+1) = ε.

From (3), we see that there exists M = sup
n∈N

2ϕ(xn). From (9) and (7), for

all k ∈ N, we have

ε ≤ d(xm(k), xn(k)) + ϕ(xm(k)) + ϕ(xn(k))(16)
≤ d(xm(k), xn(k)−1) + d(xn(k)−1, xn(k)) +M

≤ ε+ δ0 +M.
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Using (16) and (1), there exists γ(ε, ε+ δ0 +M) ∈ (0, 1) such that

d(xn(k)+1, xm(k)+1) + ϕ(xn(k)+1) + ϕ(xm(k)+1)(17)

≤ γ(ε, ε+ δ0 +M)max
{
d(xm(k), xn(k)) + ϕ(xm(k)) + ϕ(xn(k)),

d(xn(k), xn(k)+1) + ϕ(xn(k)) + ϕ(xn(k)+1)
}
.

Taking the limit as k →∞ in (17) and using (3), (11), (15), we obtain

ε ≤ γ(ε, ε+ δ0 +M)ε.

Therefore, γ(ε, ε + δ0 + M) ≥ 1. It is a contradiction to the fact that
γ(ε, ε+ δ0 +M) ∈ (0, 1). Hence, we deduce that {xn} is a Cauchy sequence
in (X, d). Since (X, d) is complete, there exists x∗ ∈ X such that

(18) lim
n→∞

xn = x∗.

Next, we prove that

(19) ϕ(x∗) = 0.

From (3), we have

(20) lim
n→∞

ϕ(xn) = 0.

Since ϕ is lower semi-continuous, it follows that

0 ≤ ϕ(x∗) ≤ lim inf
n→∞

ϕ(xn) = lim
n→∞

ϕ(xn) = 0.

Then (19) holds.
Now, we prove that x∗ is a fixed point of T . Denote

I = {n ∈ N : xn = x∗} and J = {n ∈ N : xn 6= x∗}.
Since I ∪ J = N, at least one of I and J is infinite.

Case 1. I is infinite. We can find a subsequence {xn(p)} of {xn} such that
xn(p) = x∗ for all p ∈ N. Since xn(p)+1 = Txn(p) = Tx∗ and lim

p→∞
xn(p)+1 =

x∗, we have x∗ = Tx∗. That is, x∗ is a fixed point of T .

Case 2. J is infinite. We can find a subsequence {xn(p)} of {xn} such that
d(xn(p), x

∗) > 0 for all p ∈ N. Then, for each p, we can find 0 < Ap < Bp

such that
Ap ≤ d(xn(p), x∗) + ϕ(xn(p)) + ϕ(x∗) ≤ Bp.

From (1), there exists γ(Ap, Bp) ∈ (0, 1) such that

d(xn(p)+1, Tx
∗) + ϕ(xn(p)+1) + ϕ(Tx∗)(21)

≤ γ(Ap, Bp)max
{
d(xn(p), x

∗) + ϕ(xn(p)) + ϕ(x∗),

d(xn(p), xn(p)+1) + ϕ(xn(p)) + ϕ(xn(p)+1)
}
.

Note that, by (18), (19) and (20), we have

lim
p→∞

[d(xn(p), x
∗) + ϕ(xn(p)) + ϕ(x∗)]
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= lim
p→∞

[d(xn(p), xn(p)+1) + ϕ(xn(p)) + ϕ(xn(p)+1)] = 0.

Then taking the limit as p→∞ in (21) and using (18) and (20), we have

d(x∗, Tx∗) + ϕ(Tx∗) ≤ 0.(22)

So d(x∗, Tx∗) = 0, that is x∗ = Tx∗. Therefore, x∗ is a fixed point of T .
Finally, we prove that the fixed point of T is unique. Suppose that y∗ ∈ X

is another fixed point of T , that is, Ty∗ = y∗ and d(x∗, y∗) > 0. Since
d(x∗, y∗) > 0, we can find 0 < α < β such that

α ≤ d(x∗, y∗) + ϕ(x∗) + ϕ(y∗) ≤ β.

From (1), we have

d(x∗, y∗) + ϕ(x∗) + ϕ(y∗)

≤ d(Tx∗, T y∗) + ϕ(Tx∗) + ϕ(Ty∗)

≤ γ(α, β)max{d(x∗, y∗) + ϕ(x∗) + ϕ(y∗), d(x∗, Tx∗) + ϕ(x∗) + ϕ(Tx∗)}
= γ(α, β)max{d(x∗, y∗) + ϕ(x∗) + ϕ(y∗), d(x∗, x∗) + ϕ(x∗) + ϕ(x∗)}
= γ(α, β)[d(x∗, y∗) + ϕ(x∗) + ϕ(y∗)].

Then γ(α, β) ≥ 1. It is a contradiction to γ(α, β) ∈ (0, 1). This proves that
the fixed point of T is unique. �

Remark 2.1. In 2010, Tasković proved general results for the existence,
not for the uniqueness, of the fixed point of a map T : X −→ X on some
topological space X [14, Theorem 3, Corollary 1]. Tasković’s results are
very general but Theorem 2.1 may not be derived directly from them. For
example, put M(x) =M(x, Tx, T, ϕ), that is,

M(x) = d(x, Tx) + ϕ(x) + ϕ(Tx).

From (1), if a ≤ M(x) ≤ b, then M(Tx) ≤ γ(a, b)M(x) ≤ M(x). So, the
condition (M’) in [14, Corollary 1] is satisfied for x satisfying M(x) ∈ [a, b],
not for all x ∈ X.

Moreover, if M(x) ∈ [a, b] for all x ∈ X, then the condition (M’) in [14,
Corollary 1] is satisfied. However, we get

0 < a ≤ lim
n→∞

sup
i≥n

M(T ix), lim
n→∞

sup
i≥2n

M(T ix), lim
n→∞

sup
i≥2n+1

M(T ix) ≤ b

if the limits exist. So,M(t) ≤ lim
n→∞

sup
i≥n

M(T ix) orM(t) ≤ lim
n→∞

sup
i≥2n

M(T ix)

or M(t) ≤ lim
n→∞

sup
i≥2n+1

M(T ix) may not imply T (t) = t. Then X may not

satisfy the so-called condition of local sup TCS-convergence [14, page 21].

From Theorem 2.1, we get [13, Theorem 2.1] as a direct consequence.

Corollary 2.1 ([13], Theorem 2.1). Let (X, d) be a complete metric spaces,
ϕ : X → [0,∞) be a lower semi-continuous function and T : X → X be a
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map. Suppose that for any 0 < a < b <∞, there exists 0 < γ(a, b) < 1 such
that for all x, y ∈ X,

a ≤ d(x, y) + ϕ(x) + ϕ(y) ≤ b
⇒ d(Tx, Ty) + ϕ(Tx) + ϕ(Ty) ≤ γ(a, b)[d(x, y) + ϕ(x) + ϕ(y)].

Then T has a unique fixed point z ∈ X. Moreover, ϕ(z) = 0.

The following example shows that Theorem 2.1 is a proper generalization
of Corollary 2.1 for a map T on a complete metric space (X, d) with some ϕ.

Example 2.1. Let X = [0, 1] with the usual metric d, ϕ(x) = 0 for all
x ∈ X and

Tx =


1

2
, if x ∈ [0, 1);

3

8
, if x = 1.

Then (X, d) is a complete metric space and ϕ is lower semi-continuous. We
see that

d
(
T 7

8 , T1
)
+ ϕ

(
T 7

8

)
+ ϕ(T1) =

∣∣∣∣12 − 3

8

∣∣∣∣+ 0 + 0 =
1

8

d
(
7
8 , 1
)
+ ϕ

(
7
8

)
+ ϕ(1) =

∣∣∣∣78 − 1

∣∣∣∣+ 0 + 0 =
1

8
.

Then Corollary 2.1 is not applicable to T and ϕ on (X, d). However, if
x, y ∈ [0, 1), then (1) obviously holds. If x ∈ [0, 1) and y = 1, we have

d(Tx, Ty) + ϕ(Tx) + ϕ(Ty) = d(Tx, T1) + ϕ(Tx) + ϕ(T1) =

∣∣∣∣12 − 3

8

∣∣∣∣ = 1

8
,

max
{
d(x, y) + ϕ(x) + ϕ(y), d(x, Tx) + ϕ(x) + ϕ(Tx)

}
= max

{
d(x, 1) + ϕ(x) + ϕ(1), d(x, Tx) + ϕ(x) + ϕ(Tx)

}
= max

{
|x− 1|,

∣∣x− 1
2

∣∣}
≥ 1

4
.

If y ∈ [0, 1) and x = 1, we have

d(Tx, Ty) + ϕ(Tx) + ϕ(Ty) = d(T1, Ty) + ϕ(T1) + ϕ(Ty) =

∣∣∣∣12 − 3

8

∣∣∣∣ = 1

8

and

max
{
d(x, y) + ϕ(x) + ϕ(y), d(x, Tx) + ϕ(x) + ϕ(Tx)

}
= max

{
d(1, y) + ϕ(1) + ϕ(y), d(1, T1) + ϕ(1) + ϕ(T1)

}
= max

{
|1− y|,

∣∣1− 3
8

∣∣}
≥ 5

8
.
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By the above, we see that (1) holds with γ(a, b) = 1
2 . Then Theorem 2.1 is

applicable to T and ϕ on (X, d).

The following example shows that we can not add both

d(x, Ty) + ϕ(x) + ϕ(Ty) and d(y, Tx) + ϕ(y) + ϕ(Tx)

to M(x, y, ϕ) in (1), that is, we can not replace M(x, y, ϕ) in (1) by

M ′(x, y, ϕ) = max
{
d(x, y) + ϕ(x) + ϕ(y), d(x, Tx) + ϕ(x) + ϕ(Tx),

d(x, Ty) + ϕ(x) + ϕ(Ty), d(y, Tx) + ϕ(y) + ϕ(Tx)
}
.

Example 2.2. Let X = [0, 1] with the usual metric d and for each x ∈
X, put

Tx = ϕ(x) =


1

2
, if x 6= 1

2
;

0, if x =
1

2
.

Then (X, d) is a complete metric space and ϕ is lower semi-continuous. If
x = y = 1

2 , then d(x, y) + ϕ(x) + ϕ(y) = 0. Therefore, for 0 < a < b < +∞
with a ≤ d(x, y) + ϕ(x) + ϕ(y) ≤ b, it does not occur x = y = 1

2 . Put

n(a, b) = inf{x : a ≤ d(x, y) + ϕ(x) + ϕ(y) ≤ b} and γ(a, b) = 1

n(a, b) + 1
.

If x, y 6= 1
2 , then d(Tx, Ty) + ϕ(Tx) + ϕ(Ty) = 0. It implies that

d(Tx, Ty) + ϕ(Tx) + ϕ(Ty) ≤ γ(a, b)M ′(x, y, ϕ).
If x 6= 1

2 , y = 1
2 , then

d(Tx, Ty) + ϕ(Tx) + ϕ(Ty) = d
(
1
2 , 0
)
+ ϕ

(
1
2

)
+ ϕ(0) = 1,

d(x, Ty) + ϕ(x) + ϕ(Ty) = d(x, 0) + ϕ(x) + ϕ(0) = x+ 1.

This proves that

γ(a, b)M ′(x, y, ϕ) ≥ γ(a, b)[d(x, Ty) + ϕ(x) + ϕ(Ty)]

=
1

n(a, b) + 1
(x+ 1)

≥ 1

= d(Tx, Ty) + ϕ(Tx) + ϕ(Ty).

If x = 1
2 , y 6=

1
2 , then

d(Tx, Ty) + ϕ(Tx) + ϕ(Ty) = d
(
0, 12
)
+ ϕ(0) + ϕ

(
1
2

)
= 1,

d(y, Tx) + ϕ(y) + ϕ(Tx) = d(0, y) + ϕ(0) + ϕ(y) = y + 1.

This proves that

γ(a, b)M ′(x, y, ϕ) ≥ γ(a, b)[d(x, Ty) + ϕ(x) + ϕ(Ty)]

=
1

n(a, b) + 1
(y + 1)
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≥ 1

= d(Tx, Ty) + ϕ(Tx) + ϕ(Ty).

By the above, we see that, for all x, y ∈ X with

a ≤ d(x, y) + ϕ(x) + ϕ(y) ≤ b
there exists γ(a, b) ∈ (0, 1) such that

d(Tx, Ty) + ϕ(Tx) + ϕ(Ty) ≤ γ(a, b)M ′(x, y, ϕ)
but T has no any fixed point.

Unfortunately, we do not know whether the conclusion of Theorem 2.1
hold if we replace M(x, y, ϕ) in (1) by

N(x, y, ϕ) = max
{
d(x, y) + ϕ(x) + ϕ(y), d(x, Ty) + ϕ(x) + ϕ(Ty)

}
or by

N(x, y, ϕ) = max
{
d(x, y) + ϕ(x) + ϕ(y), d(y, Tx) + ϕ(y) + ϕ(Tx)

}
or by

N(x, y, ϕ) = max
{
d(x, y) + ϕ(x) + ϕ(y), d(x, Tx) + ϕ(x) + ϕ(Tx),

d(y, Ty) + ϕ(y) + ϕ(Ty)
}
.

With some minor changes in the proof of Theorem 2.1, we get the second
result which contains d(y, Ty) + ϕ(y) + ϕ(Ty) in the contraction condition.

Theorem 2.2. Let (X, d) be a complete metric spaces, ϕ : X −→ [0,∞) be
a lower semi-continuous function and T : X −→ X be a map. Suppose there
exists k ∈ (0, 1) such that for all x, y ∈ X,

d(Tx, Ty) + ϕ(Tx) + ϕ(Ty)(23)
≤ kmax

{
d(x, y) + ϕ(x) + ϕ(y), d(x, Tx) + ϕ(x) + ϕ(Tx),

d(y, Ty) + ϕ(y) + ϕ(Ty)
}
.

Then T has a unique fixed point x∗ ∈ X. Moreover, ϕ(x∗) = 0.

Proof. Define the sequence {xn} and δn as in the proof of Theorem 2.1.
From (23), we have

δn+1(24)
= d(xn+1, xn+2) + ϕ(xn+1) + ϕ(xn+2)

= d(Txn, Txn+1) + ϕ(Txn) + ϕ(Txn+1)

≤ kmax
{
d(xn, xn+1) + ϕ(xn) + ϕ(xn+1), d(xn, Txn) + ϕ(xn) + ϕ(Txn),

d(xn+1, Txn+1) + ϕ(xn+1) + ϕ(Txn+1)
}

≤ kmax
{
d(xn, xn+1) + ϕ(xn) + ϕ(xn+1), d(xn, xn+1) + ϕ(xn) + ϕ(xn+1),

d(xn+1, xn+2) + ϕ(xn+1) + ϕ(xn+2)
}

= kmax
{
δn, δn+1

}
.
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Since k ∈ (0, 1), from (24) we get δn+1 ≤ δn for all n ∈ N. Then there exists
r ≥ 0 such that lim

n→∞
δn = r. Taking the limit as n → ∞ in (24), we get

r ≤ kr. Since k ∈ (0, 1), r = 0. Therefore,

(25) lim
n→∞

δn = 0.

As in the proof of Theorem 2.1, we obtain lim
n→∞

xn = x∗ and ϕ(x∗) = 0.
Also denote I and J as in the proof of Theorem 2.1, we only consider the
case J is infinite. From (23), we have

d(xn(p)+1, Tx
∗) + ϕ(xn(p)+1) + ϕ(Tx∗)(26)

≤ kmax
{
d(xn(p), x

∗) + ϕ(xn(p)) + ϕ(x∗),

d(xn(p), xn(p)+1) + ϕ(xn(p)) + ϕ(xn(p)+1),

d(x∗, Tx∗) + ϕ(x∗) + ϕ(Tx∗)
}
.

Taking the limit as p→∞ in (26), we get

d(x∗, Tx∗) + ϕ(Tx∗) ≤ k[d(x∗, Tx∗) + ϕ(Tx∗)].

It implies that d(x∗, Tx∗) = 0. Therefore, x∗ is a fixed point of T . The rest
of the proof is similar to the proof of Theorem 2.1. �

From Theorem 2.2, we get [13, Theorem 2.3], [13, Theorem 2.4] as direct
consequences.

Corollary 2.2 ([13], Theorem 2.3). Let (X, d) be a complete metric spaces,
ϕ : X → [0,∞) be a lower semi-continuous function and T : X → X be a
given mapping. Suppose that there exists a constant γ ∈ (0, 1/2) such that
for all x, y ∈ X,

d(Tx, Ty) + ϕ(Tx) + ϕ(Ty)(27)
≤ γ[d(x, Tx) + d(y, Ty) + ϕ(x) + ϕ(y) + ϕ(Tx) + ϕ(Ty)].

Then T has a unique fixed point z ∈ X. Moreover, ϕ(z) = 0.

Proof. The contraction condition (27) is a special case of (23) with k =
2γ. �

Corollary 2.3 ([13], Theorem 2.4). Let (X, d) be a complete metric spaces,
ϕ : X → [0,∞) be a lower semi-continuous function and T : X → X be a
given mapping. Suppose that there exists a constant α, β, γ ∈ [0,∞), with
α+ β + γ < 1 such that for all x, y ∈ X,

d(Tx, Ty) + ϕ(Tx) + ϕ(Ty)(28)
≤ α[d(x, y) + ϕ(x) + ϕ(y)] + β[d(x, Tx) + ϕ(x) + ϕ(Tx)]

+γ[d(y, Ty) + ϕ(y) + ϕ(Ty)].

Then T has a unique fixed point z ∈ X. Moreover, ϕ(z) = 0.
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Proof. The contraction condition (28) is a special case of (23) with k =
α+ β + γ. �

The following example shows that Theorem 2.2 is a proper generalization
of [13, Theorem 2.3] for a map T on a complete metric space (X, d) with
some ϕ.

Example 2.3. Let X = [0, 1] with the usual metric d, Tx = x
3 for all x ∈ X

and

ϕ(x) =

{
0, if x ∈

[
0, 13
]
;

1, if x ∈
(
1
3 , 1
]
.

Then (X, d) is a complete metric space and ϕ is lower semi-continuous. For
x = 0 and y = 1

3 , we have

d(Tx, Ty) + ϕ(Tx) + ϕ(Ty) = d
(
0, 19
)
+ ϕ

(
0
)
+ ϕ

(
1
9

)
=

1

9
and

d(x, Tx) + d(y, Ty) + ϕ(x) + ϕ(y) + ϕ(Tx) + ϕ(Ty)

= d(0, 0) + d
(
1
3 ,

1
9

)
+ ϕ(0) + ϕ

(
1
3

)
+ ϕ(0) + ϕ

(
1
9

)
=

2

9
.

This proves that (27) does not hold for any γ ∈
(
0, 12
)
. Then Corollary 2.2

is not applicable to T and ϕ on (X, d). However, we have

d(Tx, Ty) + ϕ(Tx) + ϕ(Ty) =
|x− y|

3
and

max
{
[d(x, y) + ϕ(x) + ϕ(y)], [d(x, Tx) + ϕ(x) + ϕ(Tx)],

[d(y, Ty) + ϕ(y) + ϕ(Ty)]
}

≥ d(x, y)

= |x− y|.
This proves that (23) holds with k = 1

3 .
Then Theorem 2.2 is applicable to T and ϕ on (X, d).

By using the argument in [13, Section 3], we get following fixed point
theorems in partial metric spaces that are generalizations of preceding ones
in [13].

Corollary 2.4. Let (X, p) be a complete partial metric spaces, ϕ : X −→
[0,∞) be a lower semi-continuous function and T : X −→ X be a map.
Suppose that for any 0 < a < b < ∞, there exists γ(a, b) ∈ (0, 1) such that
for all x, y ∈ X,

a ≤ p(x, y) ≤ b ⇒ p(Tx, Ty) ≤ γ(a, b)max
{
p(x, y), p(x, Tx)

}
.(29)
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Then T has a unique fixed point x∗ ∈ X. Moreover, p(x∗, x∗) = 0.

Proof. By using the notation in Lemma 1.1, we have

p(x, y) =
dp(x, y) + p(x, x) + p(y, y)

2

for all x, y ∈ X. Since (X, p) is a complete partial metric space, (X, dp) is
a complete metric space by Lemma 1.2. Put ϕ(x) = p(x, x) for all x ∈ X.
Then, by the assumptions, for any 0 < a < b < +∞, there exists γ(a, b) ∈
(0, 1) such that for all x, y ∈ X,

2a ≤ dp(x, y) + ϕ(x) + ϕ(y) ≤ 2b

⇒ dp(Tx, Ty) + ϕ(Tx) + ϕ(Ty)

≤ γ(a, b)max
{
dp(x, y) + ϕ(x) + ϕ(y), dp(x, Tx) + ϕ(x) + ϕ(Tx)

}
.

As in the proof of [13, Corollary 3.1], we see that ϕ is continuous. Then the
desired conclusion follows immediately from Theorem 2.1. �

Corollary 2.5. Let (X, p) be a complete partial metric spaces, ϕ : X −→
[0,∞) be a lower semi-continuous function and T : X −→ X be a map.
Suppose there exists k ∈ (0, 1) such that for all x, y ∈ X,

p(Tx, Ty) ≤ kmax
{
p(x, y), p(x, Tx), p(y, Ty)

}
.(30)

Then T has a unique fixed point x∗ ∈ X. Moreover, p(x∗, x∗) = 0.

Proof. Similar to the proof of Corollary 2.4. �
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